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LCD Problems: Problem Statement

We consider the following LCD problem

−∇ · (κ∇u− cu) = f, in Ω,

u = gD, on ∂ΩD,

(κ∇u− cu) · n = gN, on ∂ΩN.

(1)

We rewrite it as

q − κ∇u = 0, in Ω,

−∇ · (q − cu) = f, in Ω,

u = gD, on ∂ΩD,

(q − cu) · n = gN, on ∂ΩN.

(2)

Here κ is diffusion coefficient and c is convection velocity.
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LCD Problems: Finite Element Mesh

Th is the finite element triangulation of Ω

EB
h is the set of boundary faces

E I
h is the set of interior faces

Eh is the set of all faces.

EB
h

E I
h

Eh

Th
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LCD Problems: Local Problem

Let K be an element in Th. Let λ be any given function on ∂K.
We consider the following problem:

qλ − κ∇uλ = 0, in K,
−∇ · (qλ − cuλ) = f, in K,

uλ = λ, on ∂K.
(3)

We observe that if
λ = u|∂K , (4)

then
(q, u) = (qλ, uλ). (5)

Hence, our goal is to find λ that satisfies (4).
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LCD Problems: Global Problem

To that end we require that λ satisfies

λ = gD, on ∂ΩD, (6)

and

(qλ − cuλ) · n = gN, on ∂ΩN, (7)

and

(qλ − cuλ)+ · n+ + (qλ − cuλ)− · n− = 0, on F, ∀F ∈ E I
h. (8)

Here E I
h is the set of interior faces.
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LCD Problems: Abstract Formulation

We find λ such that
λ = gD, on ∂ΩD,

(qλ − cuλ) · n = gN, on ∂ΩN,

(qλ − cuλ)+ · n+ + (qλ − cuλ)− · n− = 0, on F, ∀F ∈ E I
h,

(9)

where

qλ − κ∇uλ = 0, in K,
−∇ · (qλ − cuλ) = f, in K,

uλ = λ, on ∂K.
(10)

This abstract formulation is the key idea of the HDG method.
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Approximation Spaces

We introduce the following spaces

W k
h = {w ∈ L2(Th) : w|K ∈ Pk(K),∀K ∈ Th},

V k
h = {v ∈ [L2(Th)]d : v|K ∈ [Pk(K)]d,∀K ∈ Th},

Mk
h = {µ ∈ L2(Eh) : µ|F ∈ Pk(F ),∀F ∈ Eh}.

W k
h

Mk
h
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Inner Products

We define the volume inner products as

(w, v)Th =
∑
K∈Th

(w, v)K , (w,v)Th =
∑
K∈Th

d∑
i=1

(wi, vi)K (11)

and the boundary inner product as

〈η, µ〉∂Th =
∑
K∈Th

〈η, µ〉∂K (12)

where

(w, v)K =

∫
K

wv, 〈η, µ〉∂K =

∫
∂K

ηµ. (13)
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Local Problem

Let (qh, uh) ∈ [Pk(K)]d × Pk(K) be such that

(κ−1qh,v)K + (uh,∇ · v)K − 〈ûh,v · n〉∂K = 0,

(qh − cuh,∇w)K −
〈
f̂h · n, w

〉
∂K

= (f, w)K ,
(14)

for all (v, w) ∈ [Pk(K)]d × Pk(K), where

f̂h = qh − cûh − τ(uh − ûh)n . (15)

Here τ > 0 is a stabilization parameter.

Note that the total numerical flux f̂h includes the diffusion
term, convection term, and jump term!
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Global Problem

We find ûh ∈Mk
h such that

〈
f̂h · n, µ

〉
∂Th\∂Ω

+〈ûh − gD, µ〉∂ΩD
+
〈
f̂h · n− gN, µ

〉
∂ΩN

= 0 (16)

for all µ ∈Mk
h .

The global problem (16) enforces the boundary conditions and
the jump condition in the flux.
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Formulation

We find (qh, uh, ûh) ∈ V k
h ×W k

h ×Mk
h such that

(κ−1qh,v)Th + (uh,∇ · v)Th − 〈ûh,v · n〉∂Th = 0,

(qh − cuh,∇w)Th −
〈
f̂h · n, w

〉
∂Th

= (f, w)Th ,〈
f̂h · n, µ

〉
∂Th\∂ΩD

+ 〈ûh − gD, µ〉∂ΩD
= 〈gN, µ〉∂ΩN

,

(17)

for all (v, w, µ) ∈ V k
h ×W k

h ×Mk
h , where

f̂h = qh − cûh − τ(uh − ûh)n . (18)

This completes the definition of the HDG method.
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Stabilization Parameter

The stabilization parameter is chosen as

τ = τdiff + τconv (19)

where

τdiff =
κ

`
, τconv = |c · n|. (20)

Here τdiff accounts for diffusion effect, while τconv accounts for
convection effect.

This choice is based on dimensional analysis that ensures all
the terms in (18) have the same dimension.
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Well-posedness

Uniqueness and existence: Assume that ∇ · c ≥ 0 and that τ
is chosen by (19). The HDG method is well defined.

Proof:
We need to show that (qh, uh, ûh) = (0, 0, 0) if f = gD = gN = 0.
We insert (18) into (17), choose (v, w, µ) = (qh, uh, ûh) in (17)
and sum the resulting equations up to obtain

(κ−1qh, qh)Th +
1

2

(
∇ · c, u2

h

)
Th

+

〈
(τ − 1

2
c · n)(uh − ûh), (uh − ûh)

〉
∂Th

= 0.
(21)

This implies that qh = 0 and ûh = uh on ∂Eh since ∇ · c ≥ 0, and
τ > 1

2
|c · n|.
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Well-posedness (cont’d)

It thus follows from the first equation of (17) that

∇uh = 0, (22)

which implies that uh is a constant function. Since uh = ûh = 0
on ∂ΩD, we have uh = 0. We thus obtain ûh = 0. This completes
the proof.
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Expression of the Numerical Traces

It can be derived from (15) and (16) that

ûh =


gD, on ∂ΩD,

uh −
1

τ − c · n(qh · n− c · nuh − gN), on ∂ΩN,

τ+u+
h + τ−u−h
τ+ + τ−

− 1

τ+ + τ−
(q+
h · n+ + q−h · n−), on E I

h,

(23)
and that

f̂h =


qh − cgD − τ(uh − gD)n, on ∂ΩD,

gNn, on ∂ΩN

τ+q+
h + τ−q−h
τ+ + τ−

− cûh −
τ+τ−

τ+ + τ−
(u+

hn
+ + u−hn

−), on E I
h,

(24)
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Local Postprocessing

Find u∗h ∈ Pk+1(K) such that on every K ∈ Th,

(κ∇u∗h,∇w)K = (qh,∇w)K , ∀w ∈ Pk+1(K),

(u∗h, 1)K = (uh, 1)K .
(25)

This system is very inexpensive to compute.

Note that u∗h solves the following local Neumann problem

∇ · (κ∇u) = ∇ · qh, in K,

κ∇u · n = qh · n, on ∂K,

(u, 1)K = (uh, 1)K .

Note: It is possible to postprocess qh to obtain q∗h ∈H-div
conforming

N. C. Nguyen & J. Peraire (MIT) Summer School DG Methods - Barcelona July 12, 2017 17 / 31



Convergence Properties

For diffusion-dominated problems, we have

‖u− uh‖L2(Th) ≤ C|u|Hk+1(Th)h
k+1, (26)

and that

‖q − qh‖L2(Th) ≤ C|q|Hk+1(Th)h
k+1, (27)

and that

‖u− u∗h‖L2(Th) ≤ C|u|Hk+2(Th)h
k+2. (28)

Both uh and qh converge with the optimal order k + 1.
Moreover, u∗h converges with order k + 2!
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Matrix System

The weak formulation of the HDG method yields A B −C
−BT D −E
CT −ET M

 Q
U
Û

 =

 0
F
G

 (29)

where Q, U and Û are the vectors of degrees of freedom of qh,
uh and ûh, respectively.

Note that the matrix [
A B
−BT D

]
(30)

is block-diagonal and invertible provided that τ > 0. Its inverse
can be computed inexpensively.
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Matrix System

Hence, we can eliminate Q and U to get the following system

HÛ = R, (31)

where

H = M + [CT − ET ]

[
A B
−BT D

]−1 [ C
E

]

R = G− [CT − ET ]

[
A B
−BT D

]−1 [
0
F

] (32)

The final matrix system of the HDG method involves only the
degrees of freedom of ûh.
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Nonlinear Convection-Diffusion Equations

We consider the following NCD problem

−∇ · (κ∇u− c(u)) = f, in Ω,

u = gD, on ∂ΩD,

(κ∇u− c(u)) · n = gN, on ∂ΩN.

(33)

We rewrite it as

q − κ∇u = 0, in Ω,

−∇ · (q − c(u)) = f, in Ω,

u = gD, on ∂ΩD,

(q − c(u)) · n = gN, on ∂ΩN.

(34)

Here c(u) is a nonlinear flux vector of u.

N. C. Nguyen & J. Peraire (MIT) Summer School DG Methods - Barcelona July 12, 2017 21 / 31



Formulation

We find (qh, uh, ûh) ∈ V k
h ×W k

h ×Mk
h such that

(κ−1qh,v)Th + (uh,∇ · v)Th − 〈ûh,v · n〉∂Th = 0,

(qh − c(uh),∇w)Th −
〈
f̂h · n, w

〉
∂Th

= (f, w)Th ,〈
f̂h · n, µ

〉
∂Th\∂ΩD

+ 〈ûh − gD, µ〉∂ΩD
= 〈gN, µ〉∂ΩN

,

(35)

for all (v, w, µ) ∈ V k
h ×W k

h ×Mk
h , where

f̂h = qh − c(ûh)− τ(uh − ûh)n . (36)

This completes the definition of the HDG method.
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Stabilization Parameter

The stabilization parameter is chosen as

τ = τdiff + τconv (37)

where

τdiff =
κ

`
, τconv = |c′(ûh) · n|. (38)

Here c′(·) denotes the derivatives of c(·).

In practice, one can choose

τconv = const > |c′(ûh) · n| . (39)
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Convergence Properties

For diffusion-dominated problems, we have

‖u− uh‖L2(Th) ≤ C|u|Hk+1(Th)h
k+1, (40)

and that

‖q − qh‖L2(Th) ≤ C|q|Hk+1(Th)h
k+1, (41)

and that

‖u− u∗h‖L2(Th) ≤ C|u|Hk+2(Th)h
k+2. (42)

Both uh and qh converge with the optimal order k + 1.
Moreover, u∗h converges with order k + 2!
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Weak Formulation

We find (qh, uh, ûh) ∈ V k
h ×W k

h ×Mk
h such that

(κ−1qh,v)Th + (uh,∇ · v)Th − 〈ûh,v · n〉∂Th = 0,

−(∇ · qh, w)Th − (c(uh),∇w)Th

+ 〈c(ûh) · n + τ(uh − ûh), w〉∂Th = (f, w)Th ,

〈(qh − c(ûh)) · n− τ(uh − ûh), µ〉∂Th\∂ΩD

+ 〈(ûh − gD, µ〉∂ΩD
= 〈gN, µ〉∂ΩN

,

(43)

for all (v, w, µ) ∈ V k
h ×W k

h ×Mk
h .
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Weak Formulation

We find (qh, uh, ûh) ∈ V k
h ×W k

h ×Mk
h such that

(κ−1qh,v)Th + (uh,∇ · v)Th − 〈ûh,v · n〉∂Th = 0,

−(∇ · qh, w)Th − (c(uh),∇w)Th + 〈τuh, w〉∂Th
+ 〈c(ûh) · n− τ ûh, w〉∂Th − (f, w)Th = 0,

〈qh · n, µ〉∂Th\∂ΩD
− 〈τuh, µ〉∂Th\∂ΩD

〈−c(ûh) · n + τ ûh, µ〉∂Th\∂ΩD
+ 〈ûh, µ〉∂ΩD

−〈gD, µ〉∂ΩD
− 〈gN, µ〉∂ΩN

= 0,

(44)

for all (v, w, µ) ∈ V k
h ×W k

h ×Mk
h .
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Raphson-Newton Method

For any given current solution (qnh , u
n
h, û

n
h) we define the residual

functionals as

rn1 (v) = (κ−1qnh ,v)Th + (unh,∇ · v)Th − 〈ûnh,v · n〉∂Th , (45)

rn2 (w) = −(∇ · qnh , w)Th − (c(unh),∇w)Th + 〈τunh, w〉∂Th
+ 〈c(ûnh) · n− τ ûnh, w〉∂Th − (f, w)Th , (46)

rn3 (µ) = 〈qnh · n, µ〉∂Th\∂ΩD
− 〈τunh, µ〉∂Th\∂ΩD

〈−c(ûnh) · n + τ ûnh, µ〉∂Th\∂ΩD
+ 〈ûnh, µ〉∂ΩD

− 〈gD, µ〉∂ΩD
− 〈gN, µ〉∂ΩN

. (47)
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Raphson-Newton Method

Update the solution as

(qn+1
h , un+1

h , ûn+1
h ) := (qnh , u

n
h, û

n
h) + (δqnh , δu

n
h, δû

n
h) (48)

where (δqnh , δu
n
h, δû

n
h) ∈ V k

h ×W k
h ×Mk

h is the solution of

an(δqnh ,v) + bn(δunh,v) + cn(δûnh,v) = −rn1 (v),

dn(δqnh , w) + en(δunh, w) + fn(δûnh, w) = −rn2 (w),

gn(δqnh , µ) + hn(δunh, µ) + in(δûnh, µ) = −rn3 (µ),

(49)

for all (v, w, µ) ∈ V k
h ×W k

h ×Mk
h .
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Raphson-Newton Method

The bilinear forms are given by

an(q,v) = (κ−1q,v)Th

bn(u,v) = (u,∇ · v)Th

cn(η,v) = −〈η,v · n〉∂Th
dn(q, w) = −(∇ · q, w)Th

en(u,w) = −(c′(unh)u,∇w)Th + 〈τu, w〉∂Th ,
fn(η, w) = 〈(c′(ûnh) · n− τ)η, w〉∂Th ,
gn(q, µ) = 〈q · n, µ〉∂Th\∂ΩD

hn(u, µ) = −〈τu, µ〉∂Th\∂ΩD
,

in(η, µ) = 〈(τ − c′(ûnh) · n)η, µ〉∂Th\∂ΩD
+ 〈η, µ〉∂ΩD

.

(50)

Here the prime denotes the partial derivatives.
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Matrix System

At each Newton iteration, we solve the following system An Bn Cn

Dn En Fn
Gn Hn In

 δQn

δUn

δÛn

 = −

 Rn
1

Rn
2

Rn
3

 (51)

where δQn, δUn and δÛn are the vectors of degrees of freedom
of δqnh , δunh and δûnh, respectively.

Again we note that the matrix[
An Bn
Dn En

]
(52)

is block-diagonal. Hence, we can eliminate (δQn, δUn) to
obtain a reduced system for Ûn.
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