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Today lecture’s main goals:

@ The Euler Equations

@ The Navier-Stokes Equations
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The Euler Equations for Compressible Flow

Consider the steady-state compressible Euler system

V- F(u) = s(u), (1)
where
P pPU1 pPU2 pU3
pu1 pvi +p  puiva  puivs
u=1| pvo |, F(u)= pUIVy  PUI D pugs (2)
pU3 pUIUs  pUV3  pUS + P
pE poiH  pvoH  pusH

@ Density p, velocity vector v = (v, v9, v3), and total energy F
@ Static pressure p = (v — 1)(pFE — 0.5vTv), with v = 1.4 for air
@ Total enthalpy H = E +p/p
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The Local Solver

The HDG method looks for u;, € W} such that

— (F(up), Vw) - + <ﬁ(uh, Uy, mn), w>aK = (s(up),w)g, (3)

for all w € [Py(K)|™ and for all K € T,. Here w,, is the numerical
solution and w;, is the numerical trace.

To cgmplete the method, we still need to define the numerical
flux f.(un, un, m) and the global problem for the numerical trace.
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The Numerical Flux

The numerical flux is chosen as follows
Frlun, in,m) = F(@y) - 1+ S(tn) (w, — @) (4)
Here S(u,) is the stabilization tensor.

Matrix numerical flux:
S(@n) = R(un)|A(w,)| R (). (5)

Here A(u,) and R(uy,) are the eigenvalues and eigenvectors of
the Jacobian matrix.

Lax-Friedrich’s numerical flux:

S(@,) = 71. (6)

Here 7 is an upper bound of the absolute value of the largest
magnitude eigenvalue.
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The Global Problem

The HDG method looks for ), € M} such that

T, G, m), br(wn, U, wpe, ), 1) =0, (7)
o0

+{
TH\ o0

for all u € M. Here bAh(uh, uy,, uy., n) is the boundary flux that
incorporate the boundary conditions and u,. is the boundary
data.
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The HDG Method for the Euler Equations

The HDG method looks for (u;, @) € W x M} such that

— (F(up), V), + <ﬁ(uh7 uy,mn), w>aT — (s(up),w)7, =0,

h

<fh(uh7 Up, n)? u‘>87’h\8§2 + <bh<uha Up, Upc, n)7 “>8Q = 07
(8)
for all (w, u) € W} x M}, where
Frlun, n,m) = F(@y) - n + S(@n) (w, — Gp). (9)

We still need to define the boundary flux bAh(uh, Up, Upe, M).
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Boundary Conditions

We consider two boundary conditions:

@ Far field condition: The number of quantities being set to
the flow freestream values is equal to the number of
negative eigenvalues.

@ Inviscid wall condition: Set the normal velocity to zero and
extrapolate the other quantities (density, tangential velocity,
and total energy).
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The Boundary Flux for the Far Field Condition

The boundary flux is defined as

~

b (wn, p, Upe, 1) = A (U, — up) + A;, (T, — wpe), (10)
where A = R(|A|+ A)R'and A, = R(|A| — AR

@ What if all the eigenvalues are positive?
@ What if all the eigenvalues are negative?

@ What if some eigenvalues are positive and the other
eigenvalues are negative?
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The Boundary Flux for the Inviscid Wall Condition

The boundary flux is defined as

~

b (wp, Wp, Upe, ) = Uy, — Up(Up), (11)
where
an(un) = (pn, (pavn)e, pnER)" (12)

Here (pnvn): = prvn — (prvn - m)n is the tangential component of
PhUh-
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The Compressible Navier-Stokes Equations

We consider the steady-state compressible NS equations

V-F(u,Vu)=s, inQ, (13)
where
p PYi
u= | pv; |, F; = pUiv; + 0iip — Tij , (14)
pE v;(PE 4 p) — viTij — R%Tji
and 9
I 2
- _ " (B —?/2 1
T; Praxj( +p/p—v;/2) (15)

ou; N Ou; 2 0uy
T = _z g
iTH Ox; Ox; 30wy "
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The Local Solver

The HDG method looks for (g5, uy,) € V;¥ x W} such that

(qh7 r)K + (’U,}“ V. T)K - <’l/zh,"' : n>8K = 07

— (F(un, qn), Vw), + <ﬁ(uh, qh,ﬁh,n),w>aK = (s(up), w)x,
(17)

for all (r, w) € [Pr(K)]™*? x [P,(K)]™ and for all K € Tj,.

To complete the method, we still need to define the numerical
flux and the global problem for the numerical trace.
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The Numerical Flux

The numerical flux is chosen as follows
Ftn @, @) = F (G, qn) net(S(n) + 5D (un—in) (18)

Here S(u;,) is the stabilization tensor and I is the identity tensor.

Matrix numerical flux:
S(un) = R(wn)|A()| R (). (19)
Here A(uy) and R(u),) are the eigenvalues and eigenvectors of
the Jacobian matrix.
Lax-Friedrich’s numerical flux:
S(uy) =71. (20)

Here 7 is an upper bound of the absolute value of the largest
magnitude eigenvalue.
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The Global Problem

The HDG method looks for ), € M} such that

<fh(uh’qh7ah7n)a/~”> bh(uh7qh’ah’ub6’n)’“>ag =9

+
AT \OQ

for all € MF. Here by,(wy, qu, Gy, wse, m) is the boundary flux
that incorporate the boundary conditions and ;. is the
boundary data.
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The HDG Method for the Navier-Stokes Equations

The HDG method find (g, un, us) € V¥ x W x M} such that
(qn, )7 + (un, V- 7)) — (Up, 7 n) . =0,

—

— (F(un), Vo), + (Falwn, qu nm)w) = (s(w), why, = 0.

I ) 7A> y —|—<6\’U/7 >avucan7 > :Oa
<fh(uh dn, Up n) H>8Th\m h( hy qh, Up, Wp, )M

o9
(22)
for all (r,w, n) € V¥ x W} x M}, where
— R B . . - y o~
Tn(un, qn, un,m) = F(uy, qn) - n+ (S(uwn) + PrReI>(uh u(h2)3)

We still need to define the boundary flux bAh(uh, qn, Up, Upe, T).
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Boundary Conditions

@ Subsonic inflow condition: Set all the quantities to the
boundary data, but extrapolate the total energy.

@ Supersonic inflow condition: Set all the quantities to the
boundary data.

@ Subsonic outflow condition: Set the pressure to the given
data and extrapolate the other quantities.

@ Supersonic outflow condition: Extrapolate all the quantities.

@ Adiabatic wall condition: Set the velocity and the last
component of the numerical flux to zero and extrapolate
density.

@ Isothermal wall condition: Set the velocity to zero, the
temperature to the given data, and extrapolate density.
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The Boundary Flux for the Inflow Condition

For subsonic flow we define

-~

by (Wh, Qn, Up, Wpe, ) = Up, — (Poes PV, PR ER)T . (24)

For supersonic flow we define

~

br(un, gn, Un, Upe, M) = Up, — Wpe. (25)

Here uy. = (poe, Poeie; pocEne) 1S the data at inflow boundary.
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The Boundary Flux for the Outflow Condition

For subsonic flow we define

~

A~ A~ p C T
by(Wn, Gh, Un, Wpe, M) = Wy, — <ph7)0h'vv> 7—; + 0-5|’Uh\2) . (26)

Here p,. is the pressure data at the outflow boundary.

For supersonic flow we define

~

br(un, gn, Un, Upe, M) = Up, — Up,. (27)
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The Boundary Flux for the Wall Condition

At the solid surface with no slip condition, we define
bht = Uny — Unt,  bni = Tpi, 2<i<m—1. (28)

The last component of by, depends on whether the wall is
isothermal or adiabatic.
For the adiabatic wall, we set

Orm = From (Whs Gy Uy ). (29)
For the isothermal wall, we set
D = T(up) — The, (30)

where T, is the wall temperature and T'(u;,) is the numerical
temperature.
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